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Influence of the surface permeability on the GRACE water mass variations:
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the case of the Lake Chad basin.
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Figure I : a) 2°x2° 10-days mean GRACE land water mass trends (mm yr”) . b) Spatial average (purple box) of Abst ¢ Figure 2 : a) Daily GRACE triangles with a spatial resolution equivalent to 3°x3°. b) Spatial average (green box) of
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